

Explore data using SQL

A two-day workshop at SNEHA, Mumbai

CivicDataLab

14th - 15th November, 2022

View the slides at https://bit.ly/sql-sneha

Over the next two days, we will learn about:

1. A dataset

- 1. A dataset
- 2. What makes a dataset more accesible

- 1. A dataset
- 2. What makes a dataset more accesible
- 3. Analysing data in Excel

- 1. A dataset
- 2. What makes a dataset more accesible
- 3. Analysing data in Excel
- 4. Database Tools

- 1. A dataset
- 2. What makes a dataset more accesible
- 3. Analysing data in Excel
- 4. Database Tools
- 5. Reading and Writing Structured Query Language (SQL)

- 1. A dataset
- 2. What makes a dataset more accesible
- 3. Analysing data in Excel
- 4. Database Tools
- 5. Reading and Writing Structured Query Language (SQL)
- 6. Analysing data using SQL

A good session will be if by the end you:

1. Are aware about the **basic structure of a dataset**

- 1. Are aware about the **basic structure of a dataset**
- 2. Can describe any **tabular dataset** in terms of its features

- 1. Are aware about the **basic structure of a dataset**
- 2. Can describe any **tabular dataset** in terms of its features
- 3. Are aware about the ways in which each data point can be stored in a file

- 1. Are aware about the **basic structure of a dataset**
- 2. Can describe any **tabular dataset** in terms of its features
- 3. Are aware about the ways in which each data point can be stored in a file
- 4. Can evaluate the **data quality** of any data set

- 1. Are aware about the **basic structure of a dataset**
- 2. Can describe any **tabular dataset** in terms of its features
- 3. Are aware about the ways in which each data point can be stored in a file
- 4. Can evaluate the **data quality** of any data set
- 5. Have a basic understanding about **databases**

- 1. Are aware about the **basic structure of a dataset**
- 2. Can describe any **tabular dataset** in terms of its features
- 3. Are aware about the ways in which each data point can be stored in a file
- 4. Can evaluate the **data quality** of any data set
- 5. Have a basic understanding about **databases**
- 6. Can read and write basic SQL queries

- 1. Are aware about the **basic structure of a dataset**
- 2. Can describe any **tabular dataset** in terms of its features
- 3. Are aware about the ways in which each data point can be stored in a file
- 4. Can evaluate the **data quality** of any data set
- 5. Have a basic understanding about **databases**
- 6. Can read and write basic SQL queries
- 7. Have a **pathway to develop your skills**

A basic dataset

<u>palmerpenguins</u>

▲ Island =	🗖 Date Egg 😑	# Flipper Le =	▲ Sex =	▲ Comments =
Torgersen	11/11/07	181	MALE	Not enough blood for isotopes.
Torgersen	11/11/07	186	FEMALE	
Torgersen	11/16/07	195	FEMALE	
Torgersen	11/16/07			Adult not sampled.
Torgersen	11/16/07	193	FEMALE	
Torgersen	11/16/07	190	MALE	
Torgersen	11/15/07	181	FEMALE	Nest never observed with full clutch.
Torgersen	11/15/07	195	MALE	Nest never observed with full clutch.

A tabular dataset

Features of dataset

▲ Island =	🗖 Date Egg 😑	# Flipper Le =	▲ Sex =	▲ Comments =
Torgersen	11/11/07	181	MALE	Not enough blood for isotopes.
Torgersen	11/11/07	186	FEMALE	
Torgersen	11/16/07	195	FEMALE	
Torgersen	11/16/07			Adult not sampled.
Torgersen	11/16/07	193	FEMALE	
Torgersen	11/16/07	190	MALE	
Torgersen	11/15/07	181	FEMALE	Nest never observed with full clutch.
Torgersen	11/15/07	195	MALE	Nest never observed with full clutch.

A tabular dataset

Features of a dataset:

- 1. Total Rows
- 2. Total Columns
- 3. Variables
- 4. Type of variables (Data Types)
 - 1. Categorical
 - 2. Numeric
 - 3. Text
 - 4. Date

Quiz - Identify the features of a dataset

National Data and Analytics Platform (or NDAP)

Dataset: Statewise Reproductive Child Health (RCH) Report Indicator Related to Maternal Health Antenatal

Care (ANC)

How to create a **good quality** dataset

1. Be consistent.

- 1. Be consistent.
- 2. Formatting dates.

- 1. Be consistent.
- 2. Formatting dates.
- 3. Fill in all of the cells.

- 1. Be consistent.
- 2. Formatting dates.
- 3. Fill in all of the cells.
- 4. Don't use font color or highlighting as data.

- 1. Be consistent.
- 2. Formatting dates.
- 3. Fill in all of the cells.
- 4. Don't use font color or highlighting as data.
- 5. Choose good names for things.

Be Consistent

ID	Gender	DoB	Points
1	M	10-04-1992	99
2	F	11-Mar-1991	102
3	Male	1991/23/04	-
four	Female	10-04-1992	NA

Sample Table

Be Consistent

ID	Gender	DoB	Points
1	M	10-04-1992	99
2	F	11-Mar-1991	102
3	Male	1991/23/04	-
four	Female	10-04-1992	NA

Sample Table

Do you see any issues with this table?

civic data lab

1. Consistent codes for categorical variables

civic data lab

- 1. Consistent codes for categorical variables
- 2. Single fixed code for any missing values

civic data lab

- 1. Consistent codes for categorical variables
- 2. Single fixed code for any missing values
- 3. Single common format for all dates

civic data lab

- 1. Consistent codes for categorical variables
- 2. Single fixed code for any missing values
- 3. Single common format for all dates
- 4. Extra spaces within cells

Be Consistent - The difference

ID	Gender	DoB	Points
1	M	10-04-1992	99
2	F	11-Mar-1991	102
3	Male	1991/23/04	_
four	Female	10-04-1992	NA
		S	1

ID	Gender	DoB	Points
1	М	10-04-1992	99
2	F	11-03-1991	102
3	М	23-04-1991	-99
4	F	10-04-1992	-99

Sample Table

Formatted Table

Formatting dates

	A	В	С
1	Date	Assay date	Weight
2		12/9/05	54.9
3		12/9/05	45.3
4	12/6/2005	е	47
5		е	45.7
6		е	52.9
7		1/11/2006	46.1
8		1/11/2006	38.6

Be consistent in the way in which you write dates. And always use the YYYY-MM-DD format (or put the year, month, and day in separate columns). ¹

[1]Dates as Data

No empty cells

Missing Values

Better alternative

	A	В	С
1	id	date	glucose
2	101	2015-06-14	149.3
3	102		95.3
4	103	2015-06-18	97.5
5	104		117.0
6	105		108.0
7	106	2015-06-20	149.0
8	107		169.4

No empty cells

Missing Values

Better alternative

	Α	В	С	
1	id	date	glucose	
2	101	2015-06-14	149.3	
3	102	2015-06-14	95.3	
4	103	2015-06-18	97.5	
5	104	2015-06-18	117.0	
6	105	2015-06-18	108.0	
7	106	2015-06-20	149.0	
8	107	2015-06-20	169.4	

Formatting data within files

Formatted Table Better alternative

	А	В	С
1	id	date	glucose
2	101	2015-06-14	149.3
3	102	2015-06-14	95.3
4	103	2015-06-18	97.5
5	104	2015-06-18	1.1
6	105	2015-06-18	108.0
7	106	2015-06-20	149.0
8	107	2015-06-20	169.4

Formatting data within files

Formatted Table Better alternative

	А	В	С	D
1	id	date	glucose	outlier
2	101	2015-06-14	149.3	FALSE
3	102	2015-06-14	95.3	FALSE
4	103	2015-06-18	97.5	FALSE
5	104	2015-06-18	1.1	TRUE
6	105	2015-06-18	108.0	FALSE
7	106	2015-06-20	149.0	FALSE
8	107	2015-06-20	169.4	FALSE

Naming things

good name	good alternative	avoid
Max_temp	MaxTemp1	Maximum Temp (°C)
Precipitation	Precipitation_mm	precmm
Mean_year_growth	MeanYearGrowth	Mean growth/year
sex	sex	M/F
weight	weight	W.
cell_type	CellType	Cell type
first observation	Observation 01	1st Obs.

Variable Names

Naming things

good name	good alternative	avoid
Max_temp	MaxTemp1	Maximum Temp (°C)
Precipitation	Precipitation_mm	precmm
Mean_year_growth	MeanYearGrowth	Mean growth/year
sex	sex	M/F
weight	weight	W.
cell_type	Се11Туре	Cell type
first observation	Observation 01	1st Obs.

Variable Names

File Names

Analysing data in Excel

Country	State	District	SubDistrict	Village_Town	Year	Rural_Urban	Househol	Populatio
India	Maharash	Ahmednagar	Akola	Babhul Wandi	2011	Rural	300	1477
India	Maharash	Ahmednagar	Akola	Bari	2011	Rural	201	1073
India	Maharash	Ahmednagar	Akola	Ladgaon	2011	Rural	165	653
India	Maharash	Ahmednagar	Akola	Waranghushi	2011	Rural	655	3119
India	Maharash	Ahmednagar	Akola	Samrad	2011	Rural	130	789
India	Maharash	Ahmednagar	Akola	Pabhulwandi	2011	Rural	169	700
India	Maharash	Ahmednagar	Akola	Koltembhe	2011	Rural	97	505
India	Maharash	Ahmednagar	Akola	Panjare	2011	Rural	209	1545
India	Maharash	Ahmednagar	Akola	Jaynawadi	2011	Rural	84	479
India	Maharash	Ahmednagar	Akola	Katalapur	2011	Rural	300	1481
India	Maharash	Ahmednagar	Akola	Poparewadi	2011	Rural	70	368
India	Maharash	Ahmednagar	Akola	Kelungan	2011	Rural	267	1440
India	Maharash	Ahmednagar	Akola	Virgaon	2011	Rural	766	3545
India	Maharash	Ahmednagar	Akola	Kauthewadi	2011	Rural	160	708
India	Maharash	Ahmednagar	Akola	Gardani	2011	Rural	549	2981

Primary Population Census 2011

To-Do

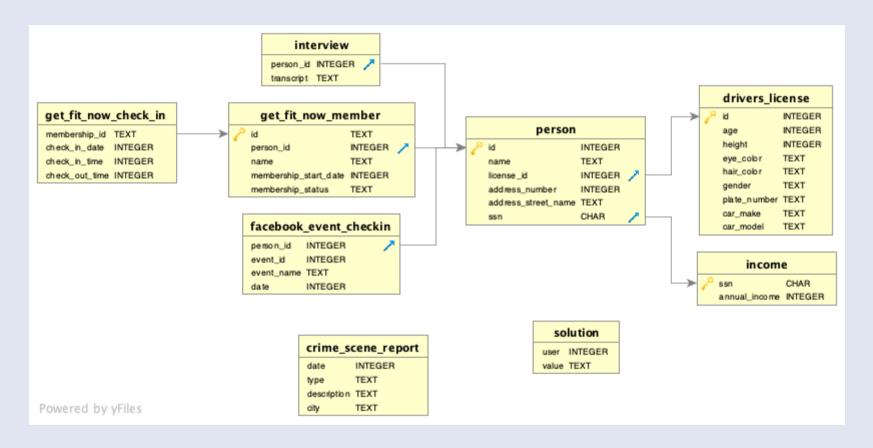
Link to the file - Download from here

- 1. Open the file in excel
- 2. Count the total number of districts
- 3. Find the district with the highest number of sub districts
- 4. Find the village with the highest number of households
- 5. Find the top 10 villages (having at-least 50 households) with highest percentage of:
 - 1. Female population
 - 2. Female literate population
 - 3. Female working population

Database Tools

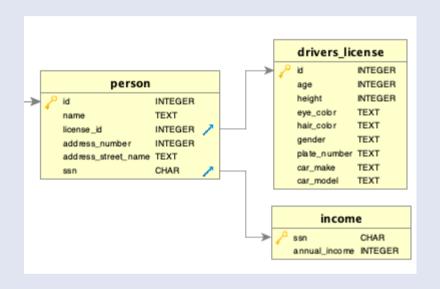
Database

<u>PostgreSQL</u>


Database Manager

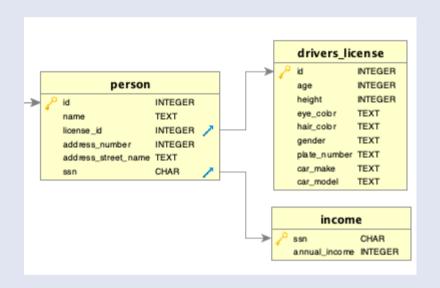
<u>pgAdmin</u>

Database Schema



A schema diagram

Database Tables



Tables in a database

Database Tables

Tables in a database

Table Names

- 1. person
- 2. drivers_license
- 3. income

Structured Query Language (SQL)

SQL is the most commonly used language to access data from a database.

SQL Query

Id Name	Gender	City	Email	Dep_Id
1	M	Delhi	ajay@gmail.com	1
	M	Mumbai	vijay@gmail.com	2
	F	Bhopal	radhika@gmail.com	1
	F	Jaipur	shikha@gmail.com	2
	M	Jaipur	hritik@gmail.com	2

Table Name: **employee**

SQL Query - SELECT

Id	Name	Gender	City	Email	Dep_Id
1 2 3 4 5	Ajay Vijay Radhika Shikha Hritik	M M F F	Delhi Mumbai Bhopal Jaipur Jaipur	ajay@gmail.com vijay@gmail.com radhika@gmail.com shikha@gmail.com hritik@gmail.com	1 2 1 2 2
5 rows	in set (6	0.00 sec)			++

Table Name: employee

SQL Query - All

Id Name	Gender	City	Email	Dep_Id
1	M	Delhi	ajay@gmail.com	1
	M	Mumbai	vijay@gmail.com	2
	F	Bhopal	radhika@gmail.com	1
	F	Jaipur	shikha@gmail.com	2
	M	Jaipur	hritik@gmail.com	2

Table Name: **employee**

SQL Query - FROM

Id Name	Gender	City	Email	Dep_Id
1	M	Delhi	ajay@gmail.com	1
	M	Mumbai	vijay@gmail.com	2
	F	Bhopal	radhika@gmail.com	1
	F	Jaipur	shikha@gmail.com	2
	M	Jaipur	hritik@gmail.com	2

Table Name: employee

SQL Query - Select variable[s]

SELECT Name, Gender FROM employee

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

SQL Query - Select variable[s]

SELECT Name, Gender FROM employee

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

Name	Gender
Ajay	M
Vijay	M
Radhika	F
Shikha	F
Hrithik	M

SQL Query - WHERE (Filter Table)

SELECT Name FROM employee WHERE gender='M'

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

SQL Query - WHERE (Filter Table)

SELECT Name FROM employee WHERE gender='M'

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

Name
Ajay
Vijay
Hrithik

SQL Query - Sort Rows - Ascending

SELECT Name, Dep_Id FROM employee ORDER BY Dep_Id

Name	Gender	City	Dep_Id	Points
Ajay	M	Delhi	1	10
Vijay	M	Mumbai	2	5
Radhika	F	Bhipal	1	15
Shikha	F	Jaipur	2	25
Hrithik	M	Jaipur	2	10
	Ajay Vijay Radhika Shikha	Ajay M Vijay M Radhika F Shikha F	Ajay M Delhi Vijay M Mumbai Radhika F Bhipal Shikha F Jaipur	Ajay M Delhi 1 Vijay M Mumbai 2 Radhika F Bhipal 1 Shikha F Jaipur 2

SQL Query - Sort Rows - Ascending

SELECT Name, Dep_Id FROM employee ORDER BY Dep_Id

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

Name	Dep_Id
Ajay	1
Radhika	1
Vijay	2
Shikha	2
Hrithik	2

SQL Query - Sort Rows - Descending

SELECT Name, Dep_Id FROM employee ORDER BY Dep_Id DESC

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

SQL Query - Sort Rows - Descending

SELECT Name, Dep_Id FROM employee ORDER BY Dep_Id DESC

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

Name	Dep_Id
Vijay	2
Shikha	2
Hrithik	2
Ajay	1
Radhika	1

SQL Query - Limit Rows

SELECT Name, Gender FROM employee LIMIT 1

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

SQL Query - Limit Rows

SELECT Name, Gender FROM employee LIMIT 1

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

Name	Gender
Ajay	M

FUNCTION	DESCRIPTION
MAX	returns the largest (maximum) number in a sets
MIN	described
COUNT	returns a count of the # of values in a set
COUNT DISTINCT	returns a count of the # of unique (distinct) values in a set
EVERY	returns true if all data inside is true (same as bool_and)
AVG	returns the average (mean) of the set of numbers
SUM	returns the sum of all the values in the set

SQL Query - Count all rows

SELECT **COUNT(*)** FROM employee

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

SQL Query - Count all rows

SELECT **COUNT(*)** FROM employee

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

SQL Query - Count unique rows

SELECT **COUNT(DISTINCT Gender)** FROM employee

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

SQL Query - Count unique rows

SELECT COUNT(DISTINCT Gender) FROM employee

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

SQL Query - Calculate SUM

SELECT **SUM(Points)** FROM employee

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

SQL Query - Calculate SUM

SELECT **SUM(Points)** FROM employee

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	М	Jaipur	2	10

TotalSum
ightarrow 65

SQL Query - Find Maximum value

SELECT **MAX(Points)** FROM employee

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

SQL Query - Find Maximum value

SELECT MAX(Points) FROM employee

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

$$Ma\xi\mu mP$$
 $\oint\!\!\!s=25$

SQL Quiz

Find the row with maximum number of points without using MAX

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

SQL Quiz

Find the row with maximum number of points without using MAX

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

Hint: Use ORDER BY and LIMIT

SQL Quiz

Find the row with maximum number of points without using MAX

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

Hint: Use ORDER BY and LIMIT

SELECT * FROM employee ORDER BY points LIMIT 1

SQL Query - GROUP BY

SELECT Gender, COUNT(*) as Total FROM employee GROUP BY Gender

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

SQL Query - GROUP BY

SELECT Gender, COUNT(*) as Total FROM employee GROUP BY Gender

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

Gender	Total
M	3
F	2

SQL Query - GROUP BY (SUM)

SELECT Dep_Id, sum(Points) as Total_Points FROM employee GROUP BY Dep_Id

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

SQL Query - GROUP BY (SUM)

SELECT Dep_Id, sum(Points) as Total_Points FROM employee GROUP BY Dep_Id

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

Dep_Id	Total_Points
1	25
2	40

SQL Query - GROUP BY (MAX) + ORDER BY

SELECT City, MAX(Points) as max_Points FROM employee GROUP BY City ORDER BY max_Points DESC

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

SQL Query - GROUP BY (MAX) + ORDER BY

SELECT City, MAX(Points) as max_Points FROM employee GROUP BY City ORDER BY max_Points DESC

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	M	Jaipur	2	10

City	max_Points
Jaipur	25
Bhipal	15
Delhi	10
Mumbai	5

SQL Query - GROUP BY + HAVING (Group Filter)

SELECT City, sum(Points) as total_Points FROM employee **GROUP BY city HAVING sum(points) > 10**ORDER BY total_points desc;

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	М	Jaipur	2	10

SQL Query - GROUP BY + HAVING (Group Filter)

SELECT City, sum(Points) as total_Points FROM employee **GROUP BY city HAVING sum(points) > 10**ORDER BY total_points desc;

Id	Name	Gender	City	Dep_Id	Points
1	Ajay	M	Delhi	1	10
2	Vijay	M	Mumbai	2	5
3	Radhika	F	Bhipal	1	15
4	Shikha	F	Jaipur	2	25
5	Hrithik	М	Jaipur	2	10

City	total_Points
Jaipur	35
Bhipal	15

Order of SQL commands

Query Process Steps

- 1. Getting Data (From, Join)
- 2. Row Filter (Where)
- 3. Grouping (Group by)
- 4. Group Filter (Having)
- 5. Return Expressions (Select)
- 6. Order & Paging (Order by & Limit / Offset)

The 6 Steps of a SQL Select Statement Process

Country	State	District	SubDistrict	Village_Town	Year	Rural_Urban	Househol	Populatio
India	Maharash	Ahmednagar	Akola	Babhul Wandi	2011	Rural	300	1477
India	Maharash	Ahmednagar	Akola	Bari	2011	Rural	201	1073
India	Maharash	Ahmednagar	Akola	Ladgaon	2011	Rural	165	653
India	Maharash	Ahmednagar	Akola	Waranghushi	2011	Rural	655	3119
India	Maharash	Ahmednagar	Akola	Samrad	2011	Rural	130	789
India	Maharash	Ahmednagar	Akola	Pabhulwandi	2011	Rural	169	700
India	Maharash	Ahmednagar	Akola	Koltembhe	2011	Rural	97	505
India	Maharash	Ahmednagar	Akola	Panjare	2011	Rural	209	1545
India	Maharash	Ahmednagar	Akola	Jaynawadi	2011	Rural	84	479
India	Maharash	Ahmednagar	Akola	Katalapur	2011	Rural	300	1481
India	Maharash	Ahmednagar	Akola	Poparewadi	2011	Rural	70	368
India	Maharash	Ahmednagar	Akola	Kelungan	2011	Rural	267	1440
India	Maharash	Ahmednagar	Akola	Virgaon	2011	Rural	766	3545
India	Maharash	Ahmednagar	Akola	Kauthewadi	2011	Rural	160	708
India	Maharash	Ahmednagar	Akola	Gardani	2011	Rural	549	2981

Primary Population Census 2011

To-Do

- 1. Locate the table in the database and print the first 10 rows
- 2. Count the total number of districts
- 3. Select the top 10 districts with the highest number of sub districts
- 4. Select the top 10 villages with the highest number of households
- 5. Find the top 10 villages (having at-least 50 households) with highest percentage of:
 - 1. Female population
 - 2. Female literate population
 - 3. Female working population

Locate the table in the database and print the first 10 rows

Locate the table in the database and print the first 10 rows

SELECT * FROM census11 LIMIT 10

Locate the table in the database and print the first 10 rows

SELECT * FROM census11 LIMIT 10

Id	Country	State	District	SubDistrict	Village_Town	Year	Rural_Urban
1	India	Maharashtra	Ahmednagar	Akola	Babhul Wandi	2011	Rural
2	India	Maharashtra	Ahmednagar	Akola	Bari	2011	Rural
3	India	Maharashtra	Ahmednagar	Akola	Ladgaon	2011	Rural
4	India	Maharashtra	Ahmednagar	Akola	Waranghushi	2011	Rural
5	India	Maharashtra	Ahmednagar	Akola	Samrad	2011	Rural

To-Do

1. Locate the table in the database and print the first 10 rows

Count the total number of districts

Count the total number of districts

Count the total number of districts

SELECT COUNT(DISTINCT district) as Total_Districts FROM census11

Count the total number of districts

SELECT COUNT(DISTINCT district) as Total_Districts FROM census11

Total_Districts

35

To-Do

1. Locate the table in the database and print the first 10 rows

2. Count the total number of districts

Select the top 10 districts with the highest number of sub districts

Select the top 10 district with the highest number of sub districts

Select the top 10 district with the highest number of sub districts

SELECT district, COUNT(DISTINCT subdistrict) as Total_SubDistricts FROM census11 GROUP BY district ORDER
BY Total_SubDistricts DESC, district LIMIT 10

Select the top 10 district with the highest number of sub districts

SELECT district, COUNT(DISTINCT subdistrict) as Total_SubDistricts FROM census11 GROUP BY district ORDER
BY Total_SubDistricts DESC, district LIMIT 10

District	Total_SubDistricts
Nanded	16
Nashik	16
Yavatmal	16
Ahmednagar	15
Chandrapur	15
Jalgaon	15
Nagpur	15
Pune	15

To-Do

1. Locate the table in the database and print the first 10 rows

2. Count the total number of districts

3. Select the top 10 districts with the highest number of sub districts

Select the top 10 villages with the highest number of households

Select the top 10 villages with the highest number of households

Select the top 10 villages with the highest number of households

SELECT district, subdistrict, village_town, Households FROM census11 WHERE rural_urban = 'Rural' ORDER BY
Households DESC LIMIT 10

Select the top 10 villages with the highest number of households

SELECT district, subdistrict, village_town, Households FROM census11 WHERE rural_urban = 'Rural' ORDER BY
Households DESC LIMIT 10

District	SubDistrict	Village_Town	Households
Pune	Haveli	Fursungi	15595
Thane	Kalyan	Nandiwali Tarf Pachanand (N.V.)	9087
Pune	Haveli	Manjari Bk	8401
Nashik	Niphad	Pimpalgaon Baswant	8187
Ahmednagar	Shevgaon	Shevgaon	8013
Pune	Haveli	Keshavnagar-Mundwa	7537
Pune	Haveli	Lahagaon	7526
Sangli	Jat	Jat	7411

To-Do

1. Locate the table in the database and print the first 10 rows

2. Count the total number of districts

3. Select the top 10 districts with the highest number of sub districts

4. Select the top 10 villages with the highest number of households

Find the top 10 villages (having at-least 50 households) with highest percentage of:

Female population

To-Do

1. Locate the table in the database and print the first 10 rows

2. Count the total number of districts

3. Select the top 10 districts with the highest number of sub districts

4. Select the top 10 villages with the highest number of households

Find the top 10 villages (having at-least 50 households) with highest percentage of:

Female population Female literate population

To-Do

1. Locate the table in the database and print the first 10 rows

2. Count the total number of districts

3. Select the top 10 districts with the highest number of sub districts

4. Select the top 10 villages with the highest number of households

Find the top 10 villages (having at-least 50 households) with highest percentage of:

Female population Female literate population Female working population

Query - 5 (Calculated fields)

Find the top 10 villages, having at-least 50 households, with highest percentage of Female population

Query - 5 (Calculated fields)

Find the top 10 villages, having at-least 50 households, with highest percentage of Female population

SELECT district, subdistrict, village_town, (cast(femalepopulation as decimal)/population)*100 as percent_female_pop FROM census11 WHERE rural_urban = 'Rural' AND households >= 50 ORDER BY percent_female_pop DESC LIMIT 10

Query - 5 (Calculated fields)

Find the top 10 villages, having at-least 50 households, with highest percentage of Female population

SELECT district, subdistrict, village_town, (cast(femalepopulation as decimal)/population)*100 as percent_female_pop FROM census11 WHERE rural_urban = 'Rural' AND households >= 50 ORDER BY percent_female_pop DESC LIMIT 10

District	SubDistrict	Village_Town	percent_female_pop
Gondia	Deori	Charbhata	77.05287
Gadchiroli	Chamorshi	Tumdi	75.07599
Gadchiroli	Dhanora	Sode	71.55050
Ratnagiri	Dapoli	Borivali	71.32616
Raigad	Mangaon	Nhave	70.82803
Raigad	Mhasla	Dehen	69.96337
Nandurbar	Talode	Lobhani	69.77863

Case Study - Tracking field visits

Source: SNEHA

To-Do:

Filter out all cases which are closed

- 1. For each cluster, center and CO (community organiser):
 - 1. Count the total number of pregnant women
 - 2. Count the number of high risk pregnancies
 - 3. Find the distribution of pregnant women by month of pregnancy
- 2. Find the cluster, center and CO with the highest number of pregnancies in the sixth and seventh month
- 3. For all women in this group, find the total number of field visits
- 4. For all women in the above group, count the total number of visits per month 54 / 62

Case Study - Tracking field visits

To-Do:

- 1. For each cluster, center and CO (community organiser):
 - 1. Count the total number of pregnant women
 - 2. Count the number of high risk pregnancies
 - 3. Find the distribution of pregnant women by month of pregnancy
- 2. Find the cluster, center and CO with the highest number of pregnancies in the sixth and seventh month
- 3. For all women in this group, find the total number of field visits
- 4. For all women in the above group, count the total number of visits per month

SQL file

How many women with high risk pregnancy were visited at-least once in September, 2022

How many women with high risk pregnancy were visited at-least once in September, 2022

We don't have all the information in one table so we have to get information from multiple tables.

How many women with high risk pregnancy were visited at-least once in September, 2022

We don't have all the information in one table so we have to get information from multiple tables.

Break the query

How many women with high risk pregnancy were visited at-least once in September, 2022

We don't have all the information in one table so we have to get information from multiple tables.

Break the query

Part 1

Part 2

Final Query

Find the women with high risk pregnancy (current)

SELECT id FROM case_anc_visit_reduced WHERE closed=FALSE AND high_risk_preg='Yes'

How many women with high risk pregnancy were visited at-least once in September, 2022

We don't have all the information in one table so we have to get information from multiple tables.

Break the query

Part 1

Part 2

Final Query

Find the women who were visited at-least once in September, 2022

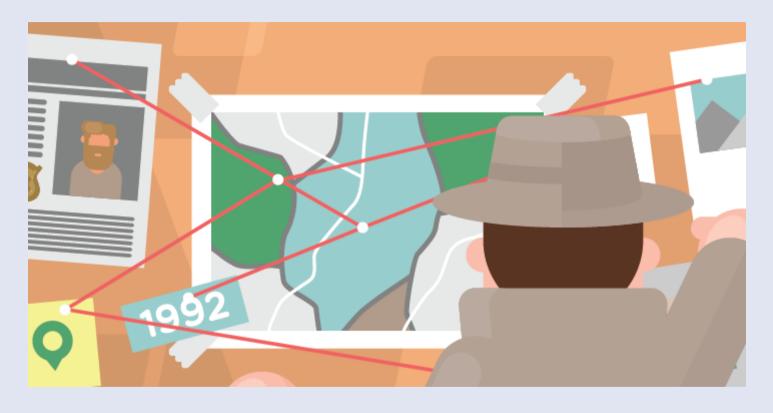
SELECT DISTINCT(caseid) FROM form_anc_visit_reduced WHERE TO_CHAR(anc_visit_date,'YYYY-MM') = '2022-09'

Learn more about working with Dates

How many women with high risk pregnancy were visited at-least once in September, 2022

We don't have all the information in one table so we have to get information from multiple tables.

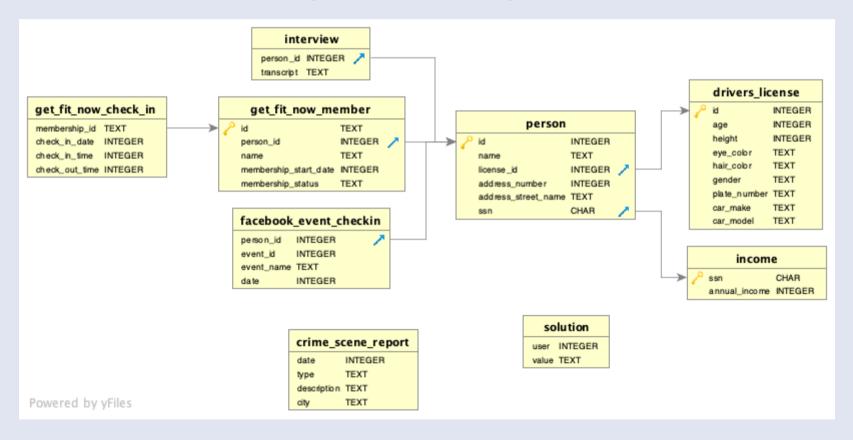
Break the query


Part 1 Part 2 Final Query

Find the womenID which are present in both Part 1 and 2

SELECT id FROM case_anc_visit_reduced WHERE closed=FALSE AND high_risk_preg='Yes' AND id IN (SELECT DISTINCT(caseid) FROM form_anc_visit_reduced WHERE TO_CHAR(anc_visit_date,'YYYY-MM') = '2022-09')

SQL Detective


Source: knightlab

SQL file

SQL Detective - Step by Step

Open the <u>schema diagram</u>

SQL Detective - Step by Step

Read the clues & Execute the commands inside the web page

Use your knowledge of the database schema and SQL commands to find out who committed the murder. When you think you know the answer, go to the next section.
1
RUN RESET

SQL Detective - Step by Step

Check the answer!

```
Did you find the killer?

1 INSERT INTO solution VALUES (1, 'Insert the name of the person you found here');
2 SELECT value FROM solution;

RUN & RESET
```

Resources to learn and practice SQL

Queries and Feedback

Share your feedback here -> https://forms.gle/nBwwbiTXCbAdv5Gz5